Use of “extended” BV phase space
Let
denote the BV phase space.
In “physics notations”:
Given an embedding
, each
gives
an “exact symmetry”
.
Let
be the corresponding group,
.
Let us promote
to the “extended” BV phase space, in the following way:
The space
can be understood as the space of maps
.
Let
and
be the coordinates of
. We define the
cohomological vector field
. The “denominator”
in Eq. (39)
consists of maps constant in
(i.e.
function of
only).
Consider the coset space
where the “denominator”
in Eq. (39)
consists of maps constant in
(i.e.
function of
only).
The algebra of functions on this coset space, with the differential
is the Weil algebra of
:
We define the “extended Master Action” as follows:
Here
is the BV Hamiltonian
of
,
in other words:
It satisfies the Master Equation
. We assume that there is no anomaly,
and
satisfies the Quantum Master Equation. Essentially,
where
is the differential of the Weil complex
.
Notice that:
— the
-invariant subspace. Indeed the invariance under
,
, follows from
the fact that the dependence on
is through the exponential factor
.
Conceptually, the construction of equivariant half-density is very straightforward.
Given a representation
, we consider the BV Hamiltonian
of the Weil differential in
, and take its
exponential. Notice that the differential
is in the Cartan model, while the equivariant half-density of Eq. (41)
is in the Weil model.
We observe:
In other words, this canonical transformation brings the action to the “direct sum”
of
(a function on
) and
(a function on
).
We can now derive the integration prescription of
〚Averaging procedure using
〛.
Let us put
. This means that
we consider a slightly smaller BV phase space, namely
the second factor is just
, and
:
For any function
on
, such that
(“unintegrated vertex operator”), the half-density
satisfies the Quantum Master Equation:
where
is the action of
on
.
We will now explain that the half-density
defines a closed PDF
on
.
The construction goes as follows. It is enough to define, for any surface
,
the integral
. We define it in the following way.
We define the Lagrangian submanifold in
, where
and the corresponding antifield run over the odd conormal bundle of
,
and let
run freely.
We define
as the integral of the half-density
over this Lagrangian submanifold times a Lagrangian submanifold in
.
Eq (43) implies that
is a closed form.
This is a particular case of a general procedure. For any PDF
on a manifold
, and a submanifold
, we can define
as
where
is the Lagrangian submanifold in
which we have just described.
On the other hand, the canonical transformation of Eq. (42) implies that
this is equivalent to:
This is Eq. (38).